Main Congress Oral Abstracts

OR01 Results of the first-in-human investigation of HMB-001 for prophylactic management of glanzmann thrombasthenia

S. Sivapalaratnam1,2,*; S. Austin3; A. Gosnell4; U. Lorch5; T. York5; A. Want5; C. Rea6
1Digital Environment Research Institute (DERI), Queen Mary University of London, London, UK; 2Barts Health NHS Trust, London, UK; 3St George’s University Hospitals NHS Trust, London, UK; 4Hemab Therapeutics, Copenhagen, Denmark; 5Richmond Pharmacology, London, UK

Introduction: Glanzmann thrombasthenia (GT) is a rare and severe bleeding disorder caused by deficiency of integrin αIIbβ3, a platelet receptor essential for platelet aggregation. People with GT experience debilitating and sometimes life-threatening bleeding episodes. To date, there are no effective prophylactic options. HMB-001 is a bispecific antibody being developed by Hemab Therapeutics to prevent or reduce the frequency of bleeding episodes in patients with GT. HMB-001 works by binding to and accumulating endogenous activated coagulation factor VII (FVIIa) and targeting it to the surface of activated platelets at the site of vascular injury. This increases the activity of FVIIa to levels that are therapeutically effective. Our Phase 1/2 clinical study aims to evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics, and preliminary efficacy of HMB-001 in individuals with GT.

Methods: The ongoing phase 1/2 study is composed of three parts: part A (single ascending dose); part B (multiple ascending dose) and part C (open label extension). The study includes male and female participants aged 18–65 years old, who have a definitive diagnosis of GT.

Results: Participants included in part A of the study received HMB-001 subcutaneously at dose levels of 0.2 mg/kg, 0.5 mg/kg or 1.25 mg/kg, respectively. At the time of the abstract submission, there were no reported treatment-related adverse events. Pharmacodynamic data showed positive proof of mechanism with a dose-dependent increase in factor VII and factor VIIa as well as signs of coagulation activation based on a dose-dependent reduction in prothrombin time. The pharmacokinetic profile indicates a dose-dependent response and is supportive of infrequent, subcutaneous dosing. Further details of safety, tolerability, pharmacodynamics, and pharmacokinetics will be summarized.

Discussion/Conclusion: The initial safety, tolerability, pharmacodynamics and pharmacokinetics results from part A of the phase 1/2 study are encouraging and support the further development of HMB-001 as a potential prophylactic treatment for GT.

OR02 Safety and efficacy of valoctocogene roxaparvovec with prophylactic corticosteroids: 1-year GENER8-3 results

M. C. Ozelo1; J. Mason2,3; A. L. Dunn4; P. Ribeiro Villaça2; M.-C. Shen6; S. K. Agarwal7; U. Imtiaz7; H. Liu7; T. M. Robinson7
1Hemocentro UNICAMP, Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil; 2Queensland Haemophilia Centre, Cancer Care Services, Royal Brisbane and Women’s Hospital, Brisbane, Australia; 3University of Queensland, Brisbane, Australia; 4The Division of Hematology, Oncology, and BMT, Nationwide Children’s Hospital and The Ohio State University College of Medicine, Columbus, USA; 5Hospital das Clínicas da Universidade de São Paulo, Brazil; 6Division of Hematology/Oncology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan; 7BioMarin Pharmaceutical Inc., Novato, USA

Introduction: We assessed the safety and efficacy of valoctocogene roxaparvovec, an adeno-associated virus vector serotype 5 (AAV5) gene therapy for persons with severe haemophilia A (SHA), with prophylactic corticosteroids (CS).

Methods: In the phase 3b, single-arm, open-label GENER8-3 study (NCT04323098), adult males with SHA (factor VIII [FVIII] activity <1 IU/dL) received 6 × 10^{13} vg/kg valoctocogene roxaparvovec and prophylactic CS starting day 1 (40 mg prednisolone equivalent weeks 0–8, taper to 5 mg weeks 9–19). Additional CS were used for alarm aminotransferase (ALT) elevations (>upper limit of normal or ≥1.5x baseline). Inclusion criteria included ≥12 months HA prophylaxis, ≥150 FVIII concentrate exposure days and no FVIII inhibitor history. Exclusion criteria included pre-existing anti-AAV5 antibodies (titers < minimum dilution for ≤25% of participants) and significant liver dysfunction. Analysis populations were intent-to-treat (ITT; received valoctocogene roxaparvovec) for safety analyses and modified ITT (mITT; on adequate prophylaxis at baseline) for efficacy analyses. The primary efficacy endpoint was change from baseline...
in chromogenic FVIII activity at week 52 (2-sided \(t \)-test). Secondary endpoints were annualized FVIII use (AFU) and annualized treated bleeding rate (AtBR) during the post-HA prophylaxis period (5 weeks post infusion or end of HA prophylaxis + washout period). CS use and safety were assessed.

Results: To date, 22 participants (mean age, 28.0 years) received valoctocogene roxaparvovec; all remain on study. Mean week 52 FVIII activity increased from imputed baseline of 1–16.1 IU/dL (standard deviation [SD], 22.4; median, 7.7; mITT, \(n = 21; P = .0057 \)). Post-prophylaxis mean AFU was 382.3 IU/kg/year (SD, 757.3; median, 37.1; \(P = .91.6 \% \) from baseline) and mean AtBR was 1.9 bleeds/year (SD, 3.7; median, 0; \(P = .67.1 \% \) from baseline). To date, 22 participants had an adverse event (AE), 20 had a treatment-related AE and five had an infusion-related reaction. ALT elevation occurred in 20 participants and steroid-related AEs occurred in 19 participants; 14 participants used reactive CS. No treatment- or immunosuppressant-related serious AEs occurred. No malignancies or FVIII inhibitors were reported. No AEs led to discontinuation.

Discussion/Conclusion: Compared to previous trials using reactive CS, prophylactic CS yielded lower FVIII activity and conferred no benefit for safety or CS burden.

OR03 First report of a long-term follow-up extension study 6 years after gene therapy with AMT-060 in adults with hemophilia B confirms safety and stable FIX expression and sustained reductions in factor IX use

W. Miesbach1,8; K. Meijer2; M. Coppens3; P. Kampmann4; R. Klamroth5; P. van der Valk6; R. Wang7; W. Seifert8; P. E. Monahan7; F. Leebek9

1Coagulation and Haemophilia Centre, Medical Clinic 2, Goethe University Hospital, Frankfurt am Main, Germany; 2Division of Thrombosis and Haemostasis, Department of Haematology, University Medical Centre Groningen, University of Groningen, Groningen; 3Amsterdam University Medical Centers, Amsterdam, The Netherlands; 4Rigshospitalet, Copenhagen, Denmark; 5Vivantes Klinikum im Friedrichshain, Berlin, Germany; 6University Medical Centre Utrecht and University Utrecht, Utrecht, The Netherlands; 7CSL Behring, King of Prussia, PA, United States; 8CSL Behring, Marburg, Germany; 9Erasmus University Medical Center, Rotterdam, The Netherlands

Introduction: AMT-060 is an adeno-associated virus serotype 5 (AAV5) vector encoding a codon-optimised wild-type human factor IX (FIX) gene, driven by a liver-specific promoter. As the predecessor of etranacogene dezaparvovec (Padua FIX variant), it has a same vector backbone, except the two-nucleotide change in the human FIX coding sequence which enhances FIX activity. The Phase I/II study included 10 patients with haemophilia B (FIX activity ≤2 IU/dL) who received a single intravenous infusion of AMT-060 (5 × 10^{12} gc/kg [Cohort 1; \(n = 5 \)) or 2 × 10^{12} gc/kg [Cohort 2; \(n = 5 \)). Nine out of ten patients were prophylaxis free after administration of AMT-060. Using the one-stage activated partial thromboplastin time (aPTT) assay, mean FIX activity as reported initially was 4.4 IU/dL at 52 weeks in Cohort 1 and 6.9 IU/dL at 26 weeks in Cohort 2.

Methods: Patients who successfully completed all assessments during 5 years of follow-up in the study were enrolled in the open-label, Phase I/IIb extension study (NCT05360706). Here, we report the first year of follow-up in the extension study; representing 6 years after AMT-060 administration.

Results: Overall, four patients from Cohort 1 (including one patient who remained on FIX prophylaxis) and five patients from Cohort 2 enrolled in the extension study. FIX activity, using the one-stage aPTT assay, remained stable at Year 6; ranging from 3.1–14.8 IU/dL in Cohort 1 and 3.0–7.1 IU/dL in Cohort 2. Mean (SD) and median FIX activity were 7.5 IU/dL (6.4) and 4.6 IU/dL in Cohort 1, and 5.5 IU/dL (1.5) and 5.8 IU/dL in Cohort 2, respectively. Mean (SD) annualised FIX consumption during Year 6 (excluding surgeries and patient who remained on FIX prophylaxis) was 656.3 (1136.8) IU/year (or 7.5 [12.9] IU/kg/year) in Cohort 1 (\(n = 3 \)) and 0 in Cohort 2 (\(n = 5 \)). No new safety events were identified during Year 6, and no patient returned to prophylaxis.

Discussion/Conclusion: Gene therapies for haemophilia A and B, including etranacogene dezaparvovec, were recently authorised in Europe. Durability of factor expression is a key consideration in the decision-making process for patients and physicians. This 6-year follow-up after AMT-060 administration confirms the safety, durability and stability of FIX expression after AAV-based gene therapy reported previously.

Disclosure of Interest: W. Miesbach Grant/Research support from: Bayer, Biogen Idec, Biotest, CSL Behring, LFB, Novo Nordisk, Octapharma, Pfizer, Roche, Sobi, Takeda, and UniQure, Consultant for: Biogen Idec, Biotest, CSL Behring, LFB, Novo Nordisk, Octapharma, Pfizer, Roche, Sobi, Takeda, and UniQure, K. Meijer Consultant for: uniQure; and honoraria from Bayer and Octapharma, with fees paid to the institution, Speaker Bureau of: Alexion, Bayer and CSL Behring, M. Coppens Grant/Research support from: Bayer, CSL Behring, Daiichi Sankyo, Novo Nordisk and Roche, Consultant for: Alexion/AstraZeneca, Bayer, CSL Behring, Sobi and Viatris,
Patients in WIL-31 received prophylaxis with pdVWF/FVIII 2–3 x per week at 20–40 IU/kg for 12 months. Nosebleeds during WIL-29/-31 were described, and mean ABRs compared. **Results:** There were 173 breakthrough bleeds during WIL-31, of which nosebleeds were the most common (89/173; 51.4%). Nosebleeds occurred in 26/33 (79%) patients during on-demand treatment versus 16/33 (48%) during prophylaxis. The mean number of spontaneous nosebleeds per patient during prophylaxis was 2.1 (overall population), 2.3 (6–11 years), 1.2 (12–16 years) and 2.2 (≥ 17 years). The mean nose ABR reduced by 76% during prophylaxis versus on-demand treatment. This was consistent across age groups (74%–77%) but not across VWD types, with mean nose ABR reductions of 48% (type 1), 89% (type 2) and 80% (type 3). During prophylaxis, a higher number of type 3 patients, compared with type 1 and type 2, experienced nosebleeds (12 vs. 3 vs. 1). 80.9% (72/89) of nosebleeds were treated with pdVWF/FVIII, 86.1% (62/72) of nosebleeds were treated with pdVWF/FVIII, 86.1% (62/72) of nosebleeds were treated with pdVWF/FVIII. **Discussion/Conclusion:** Prophylaxis with pdVWF/FVIII was effective at reducing nosebleeds in VWD across all age groups and to a greater extent in types 2 and 3 patients. **Disclosure of Interest:** A. Boban/Grant/Research support from: Octapharma, Speaker Bureau of: A. A. AstraZeneca, Bayer, CSL Behring, Novo Nordisk, Octapharma, Pfizer, Roche, Sohi, Swixx, Takeda, R. Sidonio Jr/Grant/Research support from: Genentech, Octapharma, Takeda, Speaker Bureau of: Genentech, Takeda, Octapharma, Guardian Therapeutics, Bayer, Novo Nordisk, UniQure, Biomarin, Spark, Pfizer, L. Dubey: None declared, K. Vilchevska: None declared, A. Inati/Grant/Research support from: Novartis, Bausch Health Forma/Novo Nordisk, Agios, Octapharma, Visor, Roche, GBT/Pfizer, Speaker Bureau of: Roche, Forma, Novartis, Takeda, Pfizer, Novo Nordisk, C. Khayat/Speaker Bureau of: Octapharma, CSL Behring

OR04 | Regular prophylaxis with a plasma-derived von Willebrand factor/factor VIII concentrate is effective for reducing nosebleeds in children and adults with von Willebrand disease

A. Boban1,2,*; R. F. Sidonio Jr3; L. Dubey4; K. Vilchevska5; A. Inati6; C. D. Khayat7
1Department of Internal Medicine, University Hospital Centre Zagreb, Croatia; 2Zagreb University School of Medicine, Zagreb, Croatia; 3Department of Pediatrics, Emory University School of Medicine, Atlanta, USA; 4Communal Nonprofit Enterprise “Western Ukrainian Specialized Children’s Medical Center” of Lviv Regional Council, Lviv, Ukraine; 5National Specialized Children’s Hospital, Kyiv, Ukraine; 6NINJ Hospital and LAU Gilbert and Rose-Marie Choughouy School of Medicine, Tripoli and Byblos, Lebanon; 7Hotel Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon

Introduction: Prophylaxis with a von Willebrand factor (VWF) is recommended for von Willebrand disease (VWD) with a history of frequent and severe bleeds. Bleeding from the nose is one of the most common types of bleeding in VWD. The WIL-31 study demonstrated the efficacy of prophylaxis with a plasma-derived VWF/factor VIII (pdVWF/FVIII) concentrate containing VWF and FVIII in a 1:1 activity ratio (Wilate®) in adults and children with VWD of all types. The efficacy of prophylaxis during WIL-31 in reducing nosebleeds in people with VWD, compared with previous on-demand treatment is described.

Methods: WIL-31 (NCT04052698) was a prospective, non-controlled, international, multicentre phase 3 trial that enrolled male/female patients, aged ≥ 6 years with VWD type 1 (VWF:RCo < 30 IU/dL), type 2 (except 2N) or type 3. Prior to WIL-31, all patients had received on-demand treatment with a VWF concentrate during a 6-month, prospective, observational, run-in study (WIL-29); patients who experienced at least six bleeding episodes, excluding menstrual bleeds, of which ≥ 2 were treated with a VWF concentrate, could enter WIL-31.
Introduction: GO-8 (ClinicalTrials.gov: NCT03001830) is a study of liver-directed adeno-associated virus (AAV) gene therapy for severe haemophilia A (SHA) using a factor VIII (FVIII) variant containing a 17 amino-acid peptide comprising six N-linked glycosylation motifs from the human FVIII B-domain (AAV-HLP-hFVIII-V3).

Methods: In a multi-centre, open-label, phase I/II clinical trial, we assessed the safety and efficacy of escalating doses of AAV-HLP-hFVIII-V3 pseudotyped with an AAV8 capsid in adults with SHA (FVIII activity ≤1%). Participants received prophylactic immunosuppression to reduce the risk of vector-related transaminase elevation. The primary endpoints were safety, and efficacy assessed by FVIII activity (FVIII:C).

Results: As of May 31 2023, 12 participants were enrolled into one of four vector doses: 6×10^{11} vector genomes (vg)/kg ($n = 1$), 2×10^{12} vg/kg ($n = 3$), 4×10^{12} vg/kg ($n = 3$), or 6×10^{12} vg/kg ($n = 5$). The most common vector-related adverse event was elevation in liver aminotransferase levels, which occurred in 10 of 12 participants within 12 months. Mean chromogenic FVIII:C levels at 12 months after gene therapy were 3 IU/dL in the 6×10^{11}vg/kg cohort, 13 ± 9 IU/dL in the 2×10^{12}vg/kg cohort, 8 ± 1 IU/dL in the 4×10^{12} vg/kg cohort (range: 7–9 IU/dL) and 22 ± 34 IU/dL in the 6×10^{12} vg/kg cohort (range: 1–82 IU/dL). Transgene expression was stably maintained over a median follow-up of 3 years (range: 2–5 years) from the level achieved 1-year post-infusion, best illustrated by the data from the 2×10^{12} and 4×10^{12} vg/kg cohorts. Nine of the 12 participants remained off prophylaxis post-gene therapy. Median (mean) annualised FVIII consumption reduced from 4097 IU/kg (4657) per year at baseline to 61 IU/kg (1186), that was significant (One sample t-test $p = 0.0009$). No FVIII inhibitors or thrombotic events were reported for the duration of the study.

Discussion/Conclusion: A single infusion of AAV-HLP-hFVIII-V3 resulted in stable FVIII expression over a follow-up period of up to 5 years in participants with SHA. A high rate of liver aminotransferase elevation following gene transfer impacted transgene expression. However, nine of the 12 participants were able to discontinue FVIII prophylaxis over the duration of the study, resulting in a significant reduction in FVIII concentrate usage.
INTRODUCTION: Valoctocogene roxaparvovec (AAV5-hFVIII-SQ), an approved gene therapy (GT) for severe haemophilia A (HA), uses an adeno-associated virus vector serotype 5 (AAV5) to deliver a B-domain-deleted factor VIII (FVIII-SQ) cDNA driven by a liver-selective promoter. We obtained liver biopsies (Bx) from clinical trial participants post-GT to investigate FVIII expression variability and decline mechanisms.

METHODS: In this optional sub-study of the phase 3, single-arm, open-label GENER8-1 trial (NCT03370913) assessing 6×10^{13} vg/kg valoctocogene roxaparvovec in males with severe HA (FVIII < 1 IU/dL), liver Bx were collected from 12 participants 2.1–4.1 years (yrs) post-dosing. Standard-of-care Bx in response to transient transaminits were collected from two additional participants 0.3–1.1 yrs post-GT. Exclusion criteria were any liver ultrasound findings that precluded safe Bx. Primary endpoints were to examine liver histopathology, assess transcription efficiency, and quantify episomal forms of vector DNA and transgene expression. Droplet digital PCR was used to quantify DNA and RNA in hepatocytes.

RESULTS: Of the 14 Bx collected, two were from individuals with respective peak FVIII activity of 45.1 and 27.4 IU/dL at weeks 12 and 33, which both declined to <3 IU/dL at the time of Bx (2.7 and 3.3 yrs). The remaining 12 Bx were from participants with measurable FVIII activity (13.8–86.9 IU/dL; FVIII > 3 IU/dL) at Bx (2.7–2.9 yrs). In the two individuals with FVIII < 3 IU/dL, circular full-length vector genome levels were 1.5 and 2.2 vg/diploid cell; FVIII-SQ RNA transcript levels were 0.2 and 1.7 transcripts/ng RNA. In the 12 participants with FVIII > 3 IU/dL, mean ± standard deviation (SD) circular full-length vector genome levels were 4.1 ± 2.1 (range, 1.9–7.8) vg/diploid cell; mean ± SD FVIII-SQ RNA transcript levels were 92.9 ± 47.7 (range, 15.8–152.9) transcripts/ng RNA. The two individuals with FVIII < 3 IU/dL had a significantly lower RNA/DNA ratio than the 12 with FVIII > 3 IU/dL ($P = 0.004$).

DISCUSSION/CONCLUSION: Participants had similar vector DNA levels; however, the two individuals with <3 IU/dL FVIII had lower RNA levels. Decline in FVIII over time may be due to reduced transcription of episomal vector DNA to RNA in hepatocytes. Ongoing histopathology and molecular studies will assess additional factors contributing to expression variability and transient transaminitis.

Disclosure of Interest: None declared.

A. M. Ismail1; B. Yates1; K. Jayaram1; G. Kenet2,3; J. Mason4; J. Mahlangu5,6; A. L. Dunn7; S. Shapiro8,9; M. Wang10; F. Peyvandi11,12; A. Giermasz13; R. Kazmi14; N. S. Key15; T. M. Robinson1; S. Fong1,4

1BioMarin Pharmaceutical Inc., Novato, USA; 2Amalia Biron Research Institute of Thrombosis and Hemostasis, Sackler School of Medicine, Tel Aviv, Israel; 3Sheba Medical Center, Tel Hashomer, Israel; 4Queensland Haemophilia Centre, Cancer Care Services, Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, QLD, Australia; 5Haemophilia Comprehensive Care Centre, Charlotte Maxeke Johannesburg Academic Hospital, South Africa; 6Department of Molecular Medicine and Haematology, University of Witwatersrand and NHLS, Johannesburg, South Africa; 7The Division of Hematology, Oncology, and BMT, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, USA; 8Oxford Haemophilia and Thrombosis Centre, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, UK; 9Radcliffe Department of Medicine, Oxford University, Oxford, UK; 10Hemophilia and Thrombosis Center, University of Colorado School of Medicine, Aurora, Colorado, USA; 11Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Italy; 12Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; 13Hemophilia Treatment Center, University of California, Davis, Sacramento, USA; 14London, University Hospital Southampton and National Institute for Health and Care Research Clinical Research Facility, Southampton, UK; 15UNC Blood Research Center, University of North Carolina, Chapel Hill, USA
Efficacy and safety of concizumab prophylaxis in haemophilia A or B with and without inhibitors: 56-week cut-off results of the phase 3 explorer7 and explorer8 studies

J. Windyga1,*; S. Apte2; J. Astermark3; M. Bruzelius4; G. Castaman5; H. Eichler6; K. Hampton7; T. Hansen8; P. Knoebel9; A. Lebreton10; S. Linari11; C. J. Lyu12; M. Mathias12; A. R. H. Nielsen13; L. Hvitfeldt Poulsen13; S. Šaulytė Trakymienė14; H. Tran15; J. J. Thaung Zaw16; R. d’Oiron16

1Department of Hemostasis Disorders and Internal Medicine, Institute of Hematology and Transfusion Medicine, Warsaw, Poland;
2Sahyadri Specialty Hospital, Pune, India; 3Department of Translational Medicine, Lund University, and Department of Hematology, Oncology and Radiation Physics, Skane University Hospital, Malmö, Sweden; 4Karolinska Institute and Karolinska University Hospital, Department of Medicine Solna and Department of Haematology, Stockholm, Sweden; 5Center for Bleeding Disorders and Coagulation, Department of Oncology, Careggi University Hospital, Florence, Italy; 6Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University and University Hospital, Homburg/Saar, Germany;
7Department of Cardiovascular Science, University of Sheffield, Sheffield, UK; 8Novo Nordisk A/S, Søborg, Denmark; 9Department of Medicine, Division of Haematology and Haemostasis, Medical University of Vienna, Vienna, Austria; 10Haemophilia Comprehensive Care Centre, CHU Clermont-Ferrand, Clermont-Ferrand, France; 11Department of Paediatrics, Yonsei University Severance Hospital, Seoul, South Korea; 12Haemophilia Comprehensive Care Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; 13Department of Haematology, Haemophilia Centre, Aarhus University Hospital, Aarhus, Denmark; 14Clinic of Children’s Diseases, Faculty of Medicine, Vilnius University, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania; 15Ronald Sawers Haemophilia Treatment Centre and Clinical Thrombosis Service, The Alfred Hospital, Melbourne, Australia; 16Reference Centre for Haemophilia and Congenital Rare Bleeding Disorders, Bicêtre Hospital AP-HP—University Paris—Saclay and UMR_S1176 INSERM, Le Kremlin–Bicêtre, France

Introduction: Concizumab is an anti-tissue factor pathway inhibitor (TFPI) monoclonal antibody in development as a once-daily subcutaneous prophylaxis for haemophilia A/B with and without inhibitors (HAwI/HBwI and HA/HB). The efficacy and safety of concizumab in patients with HAwI/HBwI and HA/HB were assessed in the phase 3 explorer7 (NCT04083781) and explorer8 (NCT04082429) trials. The 56-week cut-off analyses of bleeding episodes comprised patients in arms 1–4 exposed to concizumab (i.e., including patients from arm 1 who switched to concizumab prophylaxis after 24 weeks of on-demand treatment). It contained 76 patients with HAwI, 51 patients with HBwI, 80 patients with HA, and 64 patients with HB (explorer8). Median annualised bleeding rate (interquartile range) for treated spontaneous and traumatic bleeding episodes on concizumab prophylaxis was 0.7 (0.0–3.0) for HAwI, 1.1 (0.0–3.2) for HBwI, 1.7 (0.0–4.5) for HA, and 2.8 (0.0–6.4) for HB. No thromboembolic events were reported from restart of the trials until the 56-week cut-off of either trial.

Discussion/Conclusion: Concizumab-exposed patients maintained a low bleeding rate with a favourable safety profile after >1 year of exposure.

Introduction: Venous access presents a significant challenge in infants with haemophilia A without factor VIII inhibitors: primary analysis of the HAVEN 7 study

S. W. Pipe1; C. Collins2; C. Dhalluin3; G. Kenet4,5; C. Schmitt3; M. Buri3; V. Jiménez-Yuste6; F. Peyvandi7,8; G. Young9; J. Oldenburg10; M. E. Mancuso11,12; K. Kavakli13; A. Kialilainen3; M. Niggl1; T. Chang14; M. Lehle3; K. Fijnvandraat15. *

1University of Michigan, Michigan, USA; 2School of Medicine, Cardiff University, Cardiff, UK; 3F Hoffmann-La Roche Ltd, Basel, Switzerland; 4Sheba Medical Center, Ramat Gan, Israel; 5Tel Aviv University, Tel Aviv, Israel; 6Hospital Universitario La Paz-IldiPaz, Universidad Autónoma, Madrid, Spain; 7Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Italy; 8Università degli Studi di Milano, Milan, Italy; 9Children’s Hospital Los Angeles, California, USA; 10Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany; 11IRCCS Humanitas Research Hospital, Rozzano, Italy; 12Humanitas University, Pieve Emanuele, Milan, Italy; 13Ege University Faculty of Medicine Children’s Hospital, Izmir, Türkiye; 14Spark Therapeutics, Inc., San Francisco, USA; 15University of Amsterdam, Amsterdam, The Netherlands.

Introduction: Venous access presents a significant challenge in infants with haemophilia A (iWHA) requiring prophylaxis. Subcutaneous emicizumab enables prophylaxis from birth, reducing bleed risk. The HAVEN 7 (NCT04431726) primary analysis evaluates emicizumab prophylaxis over ≥52 weeks (wks) in iWHA.

Methods: iWHA in the Phase 3b, open-label study were aged ≤12 months (m) without factor (F)VIII inhibitors. They received emicizumab 3 mg/kg maintenance dose every 2 wks (Q2W) for 52 wks, continuing emicizumab for 7 years’ planned follow-up. Endpoints include efficacy (negative binomial regression model-based annualised bleed rates [ABR] for treated, all, treated spontaneous, and treated joint bleeds), safety, pharmacokinetics, anti-emicizumab antibodies (ADAs), FVIII inhibitors, and biomarkers (biomarker results are not detailed here, but will be included in the event of an associated presentation).

Results: At data cut-off (22 May, 2023), 55 male iWHA had received emicizumab for ≥52 wks (54.5% previously minimally treated [<≤ exposure days, EDs], and 45.5% previously untreated [PUP]). Median (range) age: 4 m (9 days–11 m 30 days) at enrolment; 29 (12–39) m at cut-off. Median (range) treatment duration: 100.3 (52–118) wks.

Mean ABFs (95% confidence interval) for treated, all, and treated joint bleeds were 0.4 (0.30–0.63), 2.0 (1.49–2.66), and 0.0 (0.01–0.09), respectively. Overall, 207 bleeds occurred in 46 iWHA (83.6%), 87.9% of which were traumatic. Of the 207 total bleeds, 42 bleeds in 25 iWHA were treated, all traumatic. Thirty (54.5%) iWHA had zero treated bleeds, and no iWHA had ≥3 treated bleeds. No intracranial haemorrhage occurred. One iWHA was up-titrated (Day 374) to 3 mg/kg weekly per investigator request based on locally assessed decreasing emicizumab levels. Nine iWHA (16.4%) had ≥1 treatment-related adverse event (AE), all Grade 1 injection-site reaction. No AE led to emicizumab change/withdrawal. No deaths/thrombotic events/thrombotic microangiopathies occurred. Mean steady-state emicizumab concentrations were 57–66 μg/mL, above those with the same regimen in HAVEN 2/3 (46–48 μg/mL). No iWHA developed ADAs. Two PUPs developed confirmed inhibitors after three and ten FVIII EDs, respectively.

Discussion/Conclusion: This analysis suggests that emicizumab is efficacious and well tolerated in iWHA without FVIII inhibitors.

Disclosure of Interest: S. Pipe Grant/Research support from: Siemens, Consultant for: Apicent, ASC Therapeutics, Bayer, BioMarin, CSL Behring, HEMA Biologics, Freeline, LFB, Novo Nordisk, Pfizer, Regeneron/Intellia, Genentech, Inc., F Hoffmann-La Roche Ltd, Sanofi, Takeda, Spark Therapeutics, uniQure, Paid Instructor at: Member of the scientific advisory board for GeneVentiv and Equilibra Bioscience, P. Collins Grant/Research support from: Member on an entity’s Board of Directors for the HAVEN 7 trial steering committee, and Member of the UK Haemophilia Centre Doctors’ Organisation which has received a research grant from Hoffmann-La Roche Ltd, C. Dhalluin Employee of: F Hoffmann-La Roche Ltd, G. Kenet Grant/Research support from: BSF, Pfizer, F Hoffmann-La Roche Ltd, Tel Aviv University, Sheba research authorities, Consultant for: ASC Therapeutics, Bayer, BioMarin, Novo Nordisk, Pfizer, F Hoffmann-La Roche Ltd, Sobi, Sanofi-Genzyme, Takeda, uniQure, Speaker Bureau of: Bayer, BioMarin, BPL, CSL Behring, Pfizer, Novo Nordisk, F Hoffmann-La Roche Ltd, Sanofi-Genzyme, Speaker Bureau of: Apcintex, ASC Therapeutics, Bayer, BioMarin, Novo Nordisk, Pfizer, Spark Therapeutics, uniQure, Speaker Bureau of: Bayer, BioMarin, CSL Behring, Pfizer, Novo Nordisk, Spark Therapeutics, uniQure, Speaker Bureau of: F Hoffmann-La Roche Ltd, Employee of: F Hoffmann-La Roche Ltd, M. Buri Shareholder of: F Hoffmann-La Roche Ltd, Employee of: F Hoffmann-La Roche Ltd, V. Jiménez-Yuste Grant/Research support from: F Hoffmann-La Roche Ltd, Novo Nordisk, Sobi, Takeda,
Etranacogene dezaparvovec shows sustained efficacy and safety in adult patients with severe or moderately severe haemophilia B 3 years after administration in the hope-B Trial

OR09 Etranacogene dezaparvovec shows sustained efficacy and safety in adult patients with severe or moderately severe haemophilia B 3 years after administration in the hope-B Trial

S. Pipe1; P. van der Valk2; P. Verhamme3; P. Kampmann4; F. Leebeek5; M. Coppens6; K. Meijer7; P. Raheja8,9; N. Key10; N. Visweshwar11; G. Young12; R. Lemons13; R. Klamroth14; W. Miesbach15; J. Astermark16; N. O’Connell17; R. Kazmi18; N. Galante19; S. Le Quellec19; P. Monahan19; C. Hermans20

1Department of Pediatrics and Pathology, University of Michigan, Ann Arbor, USA; 2Van Creveldkliniek, University Medical Center Utrecht, Utrecht, The Netherlands; 3Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Utrecht, Utrecht, the Netherlands; 4Rigshospitalet, Copenhagen, Denmark; 5Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands; 6Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; 7Department of Haematology, University Medical Center, University of Groningen, Groningen, Netherlands; 8Department of Oncology, Center for Bleeding Disorders and Coagulation, Careggi University Hospital, Florence, Italy; 9The Royal London Hospital, London, UK; 10University of North Carolina, Chapel Hill, USA; 11University of South Florida, Tampa, USA; 12University of Southern California Keck School of Medicine, Children’s Hospital Los Angeles, Los Angeles, USA; 13University of Utah, Salt Lake City, USA; 14Vivantes Klinikum im Friedrichshain, Berlin, Germany; 15University Hospital Frankfurt, Frankfurt, Germany; 16Institution of Translational Medicine and Department of Hematology, Oncology and Radiation Physics, Lund University, Skåne University Hospital, Malmö, Sweden; 17National Coagulation Centre, St. James’s Hospital, Dublin, Ireland; 18University Hospital Southampton NHS Foundation Trust, Southampton, UK; 19CSL Behring, King of Prussia, USA; 20Division of Haematology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium

Introduction: Etranacogene dezaparvovec (formerly AMT-061) is the first approved gene therapy for haemophilia B in the EU and US. The HOPE-B pivotal phase 3 clinical trial (NCT03569891) demonstrated superior bleed protection compared to FIX prophylaxis up to 24 months post treatment with ongoing follow-up from Year 2 onward. Here, we report efficacy and safety during Years 1–3.

Methods: In this pivotal phase 3 open-label, single-arm trial, adult male patients (pts) with severe or moderately severe haemophilia B, with or without preexisting adeno-associated virus serotype 5 (AAV5) neutralising antibodies, received a single dose of etranacogene dezaparvovec (2 × 1012 gc/kg, an AAV5 vector containing factor IX [FIX] Padua R338L transgene under the control of the liver-specific LP-1 promoter) following ≥6-month lead-in period of FIX prophylaxis.

Results: Of 54 pts receiving etranacogene dezaparvovec, 52 completed 36 months’ follow-up. Mean annualized bleeding rate (ABR) for all bleeds during Months 7–36 was reduced by 64% versus lead-in (1.52 ± 0.0004). Mean ± SD endogenous FIX activity was sustained at 41.5 IU/dL ± 21.7 (n = 50), 36.7 IU/dL ± 19.0 (n = 50), and 38.6 IU/dL ± 17.8 (n = 48) at Years 1, 2 and 3 post-treatment, respectively. At 3 years posttreatment, 51 pts (94%) remained free of continuous FIX prophylaxis; mean annualized FIX consumption decreased by 96% versus lead-in (P < 0.0001). One pt’s FIX levels eventually declined to 2%–5%; his bleeding phenotype returned, and he resumed prophylaxis per protocol at Month 30 post-treatment.

Plasma FIX levels, %: 100% to 2%; 2%–5%; 5%–20%; 20%–40%; >40%.
All pts experienced at least one adverse event (treatment-emergent AE), with no serious AEs related to treatment (one case of hepato-cellular carcinoma [HCC] and one death were reported before Year 2 and unrelated to treatment). A total of 38/54 (70%) pts experienced 96 treatment-related AEs. The most common AE was increased alanine transaminase (ALT). Nine pts (16.7%) received reactive corticosteroids for mean ± SD 81.4 ± 28.6 days. No new deaths, HCC, or late treatment-related ALT elevations were reported during Year 3.

Discussion/Conclusion: A single dose of etranacogene dezaparvovec provides long-term FIX Padua expression and superior bleed protection compared to prophylaxis, with a favourable safety profile over 3 years post administration.

Introduction: Valoctocogene roxaparvovec is a gene therapy licensed in the EU and US for individuals with severe haemophilia A (sHA) without adeno-associated virus serotype 5 (AAV5) antibodies and factor VIII (FVIII) inhibitors. We present interim results for the first individuals treated with active or prior inhibitors.

Methods: GenEr8-INH (NCT04684940) is a phase 1/2 trial evaluating safety and efficacy of valoctocogene roxaparvovec (6 × 10^{12} vg/kg) in anti-AAV5-negative sHA participants and active (part A) or prior (part B) FVIII inhibitors. Prophylactic corticosteroid (CS) started on day 15 (part A) and day 1 (part B). Primary outcome was treatment-related adverse events (AEs). Secondary outcomes included change from baseline in FVIII activity, change in FVIII inhibitor titter (part A) or recurrence (part B), change in annualized prophylactic or on-demand HA therapy, and annualized treated bleeds. As emicizumab use was permitted, a chromogenic assay with bovine reagents was used for FVIII and FVIII inhibitor assessment. Two participants enrolled in part A and B: expansion is dependent on data monitoring committee evaluation (week 12).

Results: Participants 1 and 2 in part A (PAP1 and PAP2) received emicizumab for >2 years prior to enrolment. Their inhibitor titter, 3.8 and 2.2 BU/mL at screening, peaked by 12 weeks post-infusion. Inhibitors declined in PAP1 but rose after an AE of elevated alanine aminotransferase (ALT) that was treated with increased CS. For PAP2, inhibitors declined from 20.1 BU/mL (week 9) to <0.6 BU/mL (week 32). At this time, FVIII activity peaked (41.7 IU/dL) and FVIII B-domain–deleted antigen was 26.0 ng/mL. In part B, participants 1 and 2 (PBP1 and PBP2) had prior immune tolerance induction therapy and inhibitor titters <0.6 BU/mL at screening. FVIII activity for PBP1 and PBP2 reached 26.2 and 247.8 IU/dL, respectively. In the available 32-week follow-up, inhibitor titters did not recur. The most common AEs were non-serious ALT elevations (PAP1, PBP1 and PBP2) and grade 1 non-serious AEs related to CS use (moon face, acne, and weight gain). No serious or severe AEs were reported, including malignancy, FVIII inhibitor recurrence in part B, or thromboembolism.

Discussion/Conclusion: To date, valoctocogene roxaparvovec has a similar safety profile in participants regardless of inhibitor status. Interim efficacy results are encouraging.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.